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Abstract

This study presents trajectory design/control for spacecraft formation flying with obstacle avoidance. Based on the artificial potential
field (APF), a formation potential is first defined to derive a formation control law for virtual structure, which enables multiple spacecraft
to maintain polygonal or tetrahedral formation. As an efficient method to circumvent local minima which often occur in the APF-based
approach, a newly proposed rotational potential is derived in a local coordinate frame to add in the APF framework. The synthesized
formation and rotational potential function is used to develop a gradient-based control law to design/control the formation flying tra-
jectory while avoiding collision with obstacles. Proven to be asymptotically stable in the sense of Lyapunov, the proposed continuous
feedback control law is demonstrated via formation keeping/reconfiguration examples. The proposed approach successfully maintains
the trajectory in the desired formation without colliding with obstacles and without falling into local minimum. These results are com-
paratively analysed with those of other APF-based approaches. The overall analysis shows that the proposed rotational potential, which
has been newly derived in this research, enables a group of spacecraft in formation to efficiently avoid collision with obstacles without
convergence to a local minimum.
� 2021 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

A group of spacecraft in a rigorously coordinated
formation can perform demanding missions that are diffi-
cult to achieve with a single spacecraft (Bandyopadhyay
et al., 2016, Burch et al., 2016). One example is NASA’s
Magnetospheric Multiscale (MMS) mission in which four
spacecraft fly in a tetrahedral shape (Burch et al., 2016).
Applications with spacecraft formation flying have moti-
vated even unmanned aerial vehicles (UAV), robots, and
autonomous underwater vehicles to employ coordinated
formation maneuvers (Balch and Arkin, 1998, Fu et al.,
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2020, Giulietti et al., Pham et al., 2018, Ren and
Sorensen, 2008, Stilwell and Bishop, 2000, Wu et al., 2020).

The trajectory/position control of formation flying with
collision avoidance has been achieved by a variety of
approaches such as virtual structure, behavioural
approach, and leader–follower approach (Beard et al.,
2001, Chai et al., 2019, Cheng et al., 2020, Rezaee and
Abdollahi, 2013, Rouzegar et al., 2021, Scharf et al.,
2004, Wang et al., 2020, Yang et al., 2021). For example,
Rezaee and Abdollahi (2014) proposed to integrate the vir-
tual structure approach and the behavioural approach in
two-dimensional space. A virtual leader is positioned at
the center of a circle with robots located equidistantly on
the circle. As the robots approach obstacles, they initiate
avoiding them by the behavioral approach, adjusting the
shape of formation. As this approach is intuitive and
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useful, it was applied only in two-dimensional space.
Chang et al. (2016) expanded Rezaee’s strategy of
collision-free formation control into three-dimensional
space so that UAVs could fly in formation without
collision. Recently, Silvestrini and Lavagna (2021) applied
Artificial Neural Networks (ANNs) to formation control.
They employed an online Radial-Basis Function Neural
Network (RBFNN) to approximate dynamical terms
embracing nonlinearities and increased the control accu-
racy of an Artificial-Potential-Field (APF) based
controller.

Many spacecraft formation flying missions make it nec-
essary to avoid collision while maintaining formation (Hu
et al., 2015, Liu et al., 2018). The APF is a well-known
obstacle avoidance technique in which its gradient works
as an actuating force (Cao et al., 2018, Chu et al., 2016,
Khatib, 1986, Li et al., 2018, Starek et al., 2016,
Steindorf et al., 2017). A repulsive and an attractive poten-
tial fields are artificially formed around the obstacles and
targets, respectively, so that spacecraft reach the target
while avoiding obstacles through the gradient of the inte-
grated potential field. Since the positions of obstacles are
expressed as an explicit function, feedback controls can
be configured by reflecting the states of obstacles in real-
time with relatively low computational burden (Khatib,
1986).

Though intuitive and useful, the APF often leads to
undesirable ‘local minima’ when the attractive and the
repulsive potentials are combined to produce an unin-
tended equilibrium before reaching the target. Goals
Non-reachable with Obstacles Nearby (GNRON) problem
can also happen, as spacecraft cannot reach the target
point because of the repulsive force generated from obsta-
cles nearby. Some algorithms have been proposed to
address this issue (Badawy and McInnes, 2008, Rostami
et al., 2019). Badawy and McInnes (2008) applied a super-
quadric function to a repulsive potential of the APF; as a
spacecraft gradually comes closer to an obstacle, the repul-
sive potential is adjusted to represent the actual shape of
the obstacle rather than a hyper ellipse. This approach with
the superquadric function can lower the incidence of falling
into the local minima, though a spacecraft cannot escape
from the local minima if it is co-aligned symmetrically with
obstacles and targets in a straight line. This approach can
also secure a wider range of flight space. Rezaee and
Abdollahi (2013) presented a new approach for obstacle
avoidance by designing a rotational force function in
two-dimensional space, which leads the robot to detour
the obstacle rather than to move in its opposite direction.
While the virtual target approach (for example, with a
superquadric function) is the safest to avoid falling into
the local minima, it is rather unclear how to systematically
set the virtual target. The rotational force function can be a
simple yet effective way free from local minima, however, it
has not been synthesized in a APF-based controller for
analysing stability. It is also challenging to implement rota-
tional force function in general three-dimensional space.
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Although Chang et al. (2016) derived rotational force vec-
tor in three-dimensional space for UAVs, the stability of
controller is not guaranteed when it comes to collision
avoidance maneuver. These survey suggests that: if a rota-
tional potential can be obtained from the rotational force
function to be integrated into the APF, the resultant con-
troller can be asymptotically stable, avoid convergence to
local minima, while taking advantage of their simple and
intuitive formulation.

This research presents an algorithm for designing/con-
trolling trajectories of multiple spacecraft in formation
while avoiding collision. Motivated by Rezaee and
Abdollahi (2013), a new kind of APF for formation flying
with collision avoidance is proposed, and a newly derived
rotational potential, which prevents spacecraft from being
stuck at a local minimum, is presented in a local 3-

dimensional coordinate frame. We first integrate the APF
and the rotational potential into one single function for
compact expression and derivational convenience. Once
they are synthesized to build a control law for designing/-
controlling formation flying trajectories while avoiding col-
lision, it is first proven to be asymptotically stable in the
sense of Lyapunov. Numerical simulations demonstrate
the performance and effectiveness of the proposed control
law through formation keeping/reconfiguration examples;
the proposed algorithm achieves the control objectives
for formation flying and collision avoidance, while mitigat-
ing the convergence to a local minimum thanks to the rota-
tional potential. Only the formations of regular polygons/
tetrahedron are considered for a group of spacecraft flying
in coordination. It is assumed that spacecraft can commu-
nicate with each other instantly and can detect obstacles in
advance.

The rest of this research is structured as follows. Sec-
tion 2 presents the dynamical equations of motion. In Sec-
tion 3, the enhanced potential functions and the associated
control laws for formation flying are derived based on the
APF and the virtual structure. Section 4 mainly discusses
our newly proposed collision avoidance technique and
the associated gradient-based control law for collision
avoidance. In Section 5, numerical simulations demon-
strate successful applications of the developed control law
to some non-trivial formation flying examples. Section 6
summarizes and concludes the whole discussion.
2. Dynamical equations of motion

Consider Hills-Clohessy-Wiltshire (HCW) linearized
dynamics to describe the relative motion of spacecraft near
Earth (Chu et al., 2016, Li et al., 2018):

€x ¼ 2w0 _y þ 3w2
0x;

€y ¼ �2w0 _x;

€z ¼ �w2
0z

ð1Þ

where the x-axis is along the radial direction from the
Earth center to the chief spacecraft, the z-axis is normal
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to the orbital plane, and the y-axis completes the right-
hand coordinates (Fig. 1). w0 is the angular frequency of
the chief.

w0 ¼
ffiffiffiffiffi
l
a3c

r
ð2Þ

where ac is the orbital radius of the chief spacecraft,
l ¼ GME is the gravitational parameter, G is the gravita-
tional constant and ME is the mass of the Earth. The equa-
tions of motion with the control input are stated in vector
form as:

€r ¼ f r; _rð Þ þ u;

f r; _rð Þ ¼ 2w0 _y þ 3w2
0x;�2w0 _x;�w2

0z
� �T

;

r ¼ x; y; z½ �T ; u ¼ ux; uy ; uz
� �T ð3Þ

where r is the relative radius of the deputy spacecraft.
3. Artificial potential function (APF) for spacecraft

formation flying

As a kind of path planning technique, the APF artifi-
cially constructs a potential field in a given configuration
space such that it becomes zero at the target (goal) point.
Its gradient acts as actuating force to move a spacecraft
in the direction of decreasing the potential to zero (Lee
et al., 2015). As mentioned in the introduction, this
research considers a group of spacecraft maintaining
polygonal or tetrahedral shapes only. Two types of poten-
tial functions are defined for polygonal/tetrahedral forma-
tion flying; the first one is a structural potential which
places a spacecraft on a circle/sphere with arbitrary radius
R; the second one is a repulsive potential which maintains
the desired distance between the spacecraft on the circle/-
sphere. Before defining the structural potential, a (non-
existent) virtual leader is assumed to be located at the cen-
ter of the circle/sphere to maintain a rigid formation. The
virtual leader guides the movement of the entire spacecraft
in formation, and the actual spacecraft keep equidistant
from all the other spacecraft on the circle/sphere. The tra-
Fig. 1. ECI and relative coordinate frames.
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jectory of the virtual leader acts as a reference trajectory
that all the spacecraft track in our algorithm and should
be designed/represented in advance with respect to the
HCW-frame.

To locate multiple spacecraft on the sphere, a positive
definite structural potential of the k-th spacecraft
(k 2 1; 2; � � � ;Nf g) is defined as:

V structure;k ¼ 1

4
kstr rk � rVLð Þ � rk � rVLð Þ � R2
� �2 ð4Þ

where rk ¼ xk; yk; zk½ �T and rVL ¼ xVL; yVL; zVL½ �T denote the
position vector of the k-th spacecraft and the virtual leader,
respectively. V structure;k becomes zero only if the k-th space-
craft is placed on the sphere. Similarly, the structural
potential for locating the k-th spacecraft on a (two-
dimensional) circle with its radius R in the yz-plane is
defined as follows:

V structure;k ¼ 1

4
kstr yk � yVLð Þ2 þ zk � zVLð Þ2 � R2

� �2
þ 2 xk � xVLð Þ2

	 

ð5Þ

Once those spacecraft are placed on a sphere/circle with
their virtual leader located at the center, it remains to keep
equidistant between the actual spacecraft to form a desired
tetrahedral/polygonal shape. Every spacecraft can be con-
sidered as an electric charge for that purpose; the distances
are expanded by Coulomb’s law such that the objects with
the same electric charge generate repulsion (Rezaee and
Abdollahi, 2013). All the spacecraft are considered to pos-
sess the same charge except the virtual leader. Let
rki ¼ rk � ri (i–k) be the relative distance between the i-th
and k-th spacecraft. The repulsive potentials of the k-th
spacecraft for regular polygonal and tetrahedral forma-
tions are respectively defined as Hwang (2019)

V rep;k ¼ krepqk
PN

i¼1;i–kqi
ffiffiffiffiffiffiffiffi
1

rki�rki

q
;

V rep;k ¼ krepqk
PN

i¼1;i–kqi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

krkik � 1
4R=

ffiffi
6

p
� �

1
krkik � 1

4R=
ffiffi
6

p
� �r

;

8>><>>:
ð6Þ

where qk and qi denote the electric charges of the k-th and
the i-th spacecraft, respectively, and krep is a positive scaling
factor of the repulsive potential. Note that the collision
avoidance between each spacecraft can be performed by
the repulsive potential with proper parameter selections.

Now the above described structural and repulsive poten-
tials are integrated together to compose a formation poten-
tial as follows:

V form;k ¼ V structure;k þ V rep;k þ 1

2
kv _rk � _rk ð7Þ

Here, the third term is a velocity term, which forces the
velocities of spacecraft to vanish when they reach the tar-
get. The positive scaling factor kv may be tuned to maintain
the spacecraft speed low and enable delicate maneuvers.

In practice, if obstacles can be detected in advance, it is
desirable to design a reference trajectory for formation



Fig. 2. Rotational force affecting spacecraft trajectory near obstacle.
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while avoiding obstacles a priori. In this research, a refer-
ence trajectory is designed without considering avoidance
maneuvers. To construct a reference trajectory of a virtual
leader without considering obstacles, an attractive poten-
tial (V attractive;VL) is defined as Badawy and McInnes (2008),

V attractive;VL ¼ kpkrVL � rVL;goalk þ 1

2
kv _rVL � _rVL ð8Þ

where rVL;goal denotes the target point of virtual leader, _rVL
denotes the velocity vector of the virtual leader, and kp
and kv are positive scaling factors. The potential (V VL) con-
verges to zero when the virtual leader reaches the target
point and remains stationary. The total potential for for-
mation flying (V form;tot) then becomes

V form;tot ¼ V attractive;VL þ
XN

k¼1
V form;k ð9Þ

The time derivative of the proposed potential ( _V form;tot)
are derived as

_V form;tot ¼ _V attractive;VL þ
XN

k¼1
_V form;k

¼ _rVL

� kp
rVL � rVL;goal
� �
krVL � rVL;goalk �

XN

k¼1
rV structure;k þ kv€rVL

� �
þ
XN

k¼1
_rk � rV structure;k þ 2rV rep;k þ kv€rk
� �� � ð10Þ

Here, the time derivative of the sum of formation poten-

tial (
PN

k¼1
_V form;k) yields 2rV rep;k as it includes rk � rið Þ

term. The desired acceleration of the k-th spacecraft
(€rk;desired) can be derived such that the derivative of the total
potential for formation flying becomes negative semi-

definite ( _V form;tot � 0):

€rk;desired ¼ � 1

kv
rV structure;k þ 2rV rep;k þ kvk _rk
� � ð11Þ

The desired acceleration of the virtual leader (€rVL;desired)
can be derived as

€rVL;desired ¼ � 1

kv
kp

rVL � rVL;goal
� �
krVL � rVL;goalk �

XN

k¼1
rV structure;k þ kvk;VL _rVL

 �
ð12Þ

where kvk and kvk;VL are positive parameters that slow down
the speed as they become larger.

The control law of the k-th spacecraft ukð ) for formation
flying on a circle and in a regular tetrahedron is given as
follows:

uk ¼ €rk;desired � f k rk; _rkð Þ ð13Þ
We cite Hwang (2019) for detailed derivation of the

above control law and its stability analysis.

4. Rotational potential for collision avoidance

The obstacle avoidance of spacecraft in formation can
be also achieved by implementing an appropriate potential.
However, the currently used potential for obstacle avoid-
2200
ance in literature often leads to undesired local minima
on its own; if an obstacle is located symmetrically along
the trajectory of spacecraft, the repulsive force to avoid
obstacles and the attractive force to reach the target com-
bine to generate an undesired equilibrium, which leads to
cancelling out both the attractive and repulsive forces to
make the spacecraft stuck (Warren, 1989).

This research directly addresses this issue of undesired
local minimum by introducing a newly defined rotational

potential. An appropriate rotational potential is designed
for a spacecraft to detour obstacles through behavioral
approach. Unlike the conventional avoidance potential,
our proposed rotation potential does not simply operate
in the opposite direction to the obstacle, but works actively
to avoid the obstacles. We first derive an appropriate rota-
tional potential for collision avoidance based on the asso-
ciated rotational force function.
4.1. Rotational force function in 2-Dimensional space

Consider, for example, a rectangular obstacle whose

centre is located at x0; y0½ �T and whose sides parallel to
the x-axis and y-axis are 2a and 2 b, respectively, in the
xy-plane. As can be seen in Fig. 2, the equation for ellipse
completely covering all the vertices of the rectangle can be
represented as

x� x0ð Þ2
2a2

þ y � y0ð Þ2
2b2

¼ 1 ð14Þ

The velocity vector of the k-th spacecraft (_rk) is set up as
follows such that it moves clockwise and tangent to the
ellipse:

_rk ¼ _xkbx þ _ykby
_xk ¼ a

b
yk � y0ð Þ

_yk ¼ � b
a

xk � y0ð Þ ð15Þ

Rezaee and Abdollahi (2013) have shown that the artifi-
cial force vector (f rot) that actuates the k-th spacecraft to
follow Eq. (15) can be derived as follows:

f rot ¼ f rot;xbx þ f rot;yby
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f rot;x ¼
a
b

yk � y0ð Þ

f rot;y ¼ � b
a

xk � y0ð Þ ð16Þ

Maneuvering the spacecraft tangent to the ellipse does
not cancel out the net force in a straight line, and thus
avoid being stuck at an undesired local minimum. Based
on Eq. (16), the rotational force function (Frot) in two-
dimensional space can be designed as follows:

Frot ¼ kr
f rot

kf rotk
exp �krotdkð Þ ð17Þ

Here dk denotes the relative distance between the k-th
spacecraft and obstacle. The design parameter krot determi-
nes how steeply the force increases depending on the rela-
tive distance; if krot becomes higher, the rate of increase
of force function becomes higher as the spacecraft
approaches the obstacle. kr is a scaling factor of the rota-
tional force function. In summary, the force vector in Eq.
(17) determines the direction of the rotational force func-
tion, and kr determines the magnitude of the function
depending on the relative distance.
Fig. 3. Reference frame C and local frame B.
4.2. Rotational potential for 3-Dimensional space

Rezaee and Abdollahi (2013) have first introduced the
above rotational force function that enables a spacecraft
to avoid obstacles in 2-dimensional space. As this research
considers formation flying in 3-dimensional space, we
now extend the rotational force function into 3-

dimensional space. This section is dedicated to newly deriv-
ing a rotational potential (not just a rotational force func-
tion) in 3-dimensional space and integrating it into the
APF derived in Section 3. This allows us to design a control
law for spacecraft formation flying with obstacle avoidance
by a single scalar function and to analyse stability as well.
The overall process can be summarized as follows:

STEP 1. Define a 3-dimensional local coordinate frame
centred on the obstacle.
STEP 2. Select a plane including a collision-free path in
the local frame.
STEP 3. Derive a rotational force function in the plane
in STEP 2.
STEP 4. Derive a rotational potential from the rota-
tional force function in STEP 3.

In order to extend the 2-dimensional (2-D) rotational
force function into 3-dimensional (3-D) one, a 3-D coordi-
nate frame whose origin is centred at the obstacle is first
defined. Then, the 2-D plane on which a spacecraft detours
the obstacle on a shortest path is chosen as the plane in
which the 2-D rotational force function is derived. Once
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the 2-D rotational force function is derived, it is converted
into 3-D rotational potential.

STEP 1. Define a 3-dimensional local coordinate frame

centred at the obstacle

Consider a rectangular reference frame C : bx; by;bzf g
with its origin at O in Fig. 3. Let robs ¼ robs;x; robs;y ; robs;z

� �
be the position vector of an obstacle, r ¼ rx; ry ; rz

� �
be the

position vector of a spacecraft and rG ¼ rG;x; rG;y ; rG;z
� �

be

the position vector of target point. A local 3-D coordinate

frame B : bh; bn;bin o
, whose origin is located at the center of

the obstacle, is defined (Fig. 3). The unit vector bh directs
from the obstacle to the spacecraft, the direction of bn
comes from the cross product of bh and the target vector

from the origin O
0
, and the direction of bi completes the

right-hand coordinate system.

B : ĥ; n̂; î
n o

; ĥ ¼ r� robs
r� robsj j ; n̂ ¼ rG � robsð Þ � ĥ

rG � robsð Þ � ĥ
��� ��� ;

î ¼ ĥ� n̂

ĥ� n̂
��� ���

ð18Þ

If the transformation matrix T from the reference frame
(C) to the local frame (B) is defined, then the position vec-
tor of spacecraft in the local frame ( Br) is expressed as

Br ¼ T � r� robsð Þ ð19Þ

STEP 2. Select a plane including a collision-free path in

the local frame

Suppose that the rectangular obstacle located at

robs ¼ robs;x; robs;y ; robs;z
� �

has the sides of 2a; 2b; 2cð Þ along

each axis in frame C . Similar to Eq. (14), an ellipsoid with
the smallest volume enclosing the rectangle can be
expressed as

x� robs;xð Þ2
2a2

þ y � robs;y
� �2

2b2
þ z� robs;zð Þ2

2c2
¼ 1 ð20Þ



Fig. 4. (1) Rotated ellipse with a semi-major axis a and a semi-minor axis
b0, (2) Rotated h

0
&n

0
-axes by an angle h from h&n-axes.
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As an arbitrary position x; y; z½ �T in frame C can be rep-

resented by a vector h; n; i½ �T in frame B through the follow-
ing transformation

x� robs;x
y � robs;y
z� robs;z

264
375 ¼ T�1

B h

n

i

264
375 ¼

a1 a2 a3
a4 a5 a6
a7 a8 a9

264
375

B h

n

i

264
375; ð21Þ

The obstacle ellipsoid can be expressed in frame B as
follows:

a1hþ a2nþ a3ið Þ2
2a2

þ a4hþ a5nþ a6ið Þ2
2b2

þ a7hþ a8nþ a9ið Þ2
2c2

¼ 1

ð22Þ
Now, a 2-D plane, on which the rotational force func-

tion is to be derived, needs to be selected. For that purpose,
a plane of the ellipse with lower eccentricity is specifically
selected between the two ellipses created by the intersection
of the obstacle ellipsoid and each of the hn-plane and hi-
plane. Note that only the plane containing the h-axis is
available since the spacecraft is on the h-axis. We cite
Hwang (2019) for the detailed derivation.

STEP 3. Derive a rotational force function in the plane in

STEP 2

Suppose that a plane created by the intersection of
obstacle ellipsoid and the hn-plane is selected to construct
the rotational force function. As the equation for hn-
plane is expressed as i ¼ 0, the following equations needs
to be solved simultaneously:

a1hþ a2nþ a3ið Þ2
2a2

þ a4hþ a5nþ a6ið Þ2
2b2

þ a7hþ a8nþ a9ið Þ2
2c2

¼ 1i ¼ 0 :;

�
ð23Þ

which leads to

Ah2 þ Cn2 þ Bhn ¼ 1

where A ¼ a21
2a2

þ a24
2b2

þ a27
2c2

 �
; B

¼ 2
a1a2
2a2

þ a4a5
2b2

þ a7a8
2c2

 �
; C

¼ a22
2a2

þ a25
2b2

þ a28
2c2

 �
ð24Þ
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Let h
0
-axis and n

0
-axis be the counterclockwise rotation

from the h-axis and the n-axis, respectively, by the angle
h (Fig. 4). Then, h0 and n0 can be obtained as follows:

h
0 ¼ hcoshþ nsinh; n

0 ¼ �hsinhþ ncosh ð25Þ
Rearranging Eq. (25) for h and n and applying to Eq.

(24) yields

A
0
h

0 2 þ C
0
n

02 þ B
0
h

0
n

0 ¼ 1 ð26Þ
where

A
0 ¼ Acos2hþ Bsinhcoshþ Csin2h

C
0 ¼ Asin2h� Bsinhcoshþ Ccos2h

B
0 ¼ 2 C � Að Þsinhcoshþ B cos2h� sin2h

� � ð27Þ
The value of h to make h

0
n

0
-term become zero B

0 ¼ 0
� �

is:

h ¼ 1

2
tan�1 B

A� C

 �
; h 2 � p

2
;
p
2

� �
ð28Þ

Eq. (28) is not defined when A� C ¼ 0, as the intersec-
tion becomes a circle, i.e., h=�p=4. Similarly in the case of
non-tilting ellipse, i.e., Eq. (14), the semi-major axis (a0)
and semi-minor axis (b0) of the ellipse are obtained as
follows:

a0 ¼
ffiffiffiffiffi
1

A
0

r
; b0 ¼

ffiffiffiffiffi
1

C
0

r
ð29Þ

With the help of Eq. (25), the elliptic equation that is

rotated by h (h
02
a02

þ n
02
b02

¼ 1) is expressed in the hn-plane as

hcoshþ nsinhð Þ2
a02

þ hsinh� ncoshð Þ2
b02

¼ 1 ð30Þ

In the way the required velocity vector in Eq. (15) is
obtained from Eq. (14), Eq. (30) similarly leads to the fol-
lowing simultaneous equations of the required velocity vec-
tor of the k-th spacecraft:

_hkcoshþ _nksinh ¼ a
0

b
0 hksinh� nkcoshð Þ;

_hksinh� _nkcosh ¼ � b
0

a0 hkcoshþ nksinhð Þ:

8<: ð31Þ

By solving Eq. (31), the required velocity vector ( _hk; _nk)
of the k-th spacecraft to move clockwise and tangent to the
ellipse is derived as follows:

_hk ¼ a0
b0 þ b0

a0
� �

coshsinhhk þ b0
a0 sin

2h� a0
b0 cos

2h
� �

nk;

_nk ¼ a0
b0 sin

2hþ b0
a0 cos

2h
� �

hk þ b0
a0 � a0

b0
� �

coshsinhnk:

(
ð32Þ

The artificial force vector (f rot;hn ¼ f rot;h
bh þ f rot;nbn) of

the k-th spacecraft for avoidance maneuver in the hn-
plane can be derived to follow Eq. (32) in the same way
that Eq. (16) is derived to follow Eq. (15):

f rot;h ¼ c1hk þ c2nk;

f rot;n ¼ c3hk þ c4nk;

(
ð33Þ
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c1 ¼ a
0

b
0 þ b

0

a0

 !
coshsinh; c3 ¼ a

0

b
0 sin

2hþ b
0

a0 cos
2h

 !
; c2

¼ b0

a0
sin2h� a0

b0
cos2h

 �
; c4 ¼ b0

a0
� a0

b0

 �
coshsinh

Eq. (33) is used to define the rotational force function
(Frot;hn) of the k-th spacecraft in the hn-plane as

Frot;hn ¼ kr
f rot;hn

kf rot;hnk
exp �krotdkð Þ ð34Þ

where dk denotes the relative distance between the k-th
spacecraft and the obstacle and will be rigorously defined
in the subsequent STEP 4. The parameter krot determines
how steeply the force increases as the relative distance
changes. The parameter kr is a scaling factor of the rota-
tional force function. As the spacecraft moves away from
the obstacle, the force becomes exponentially smaller.

STEP 4. Derive a rotational potential from STEP 3

It now remains to derive a rotational potential associated
with the rotational force function in Eq. (34). Note that the
k-th spacecraft is located on the positive h-axis and the
rotational force function is recalculated at each moment
the spacecraft needs to avoid obstacles. Thus, the k-th
spacecraft is positioned at hk; 0; 0½ �T ; hk > 0 in the local
coordinates. With nk ¼ 0, the rotational force function
becomes

F rot;h ¼ kr
c1ffiffiffiffiffiffiffiffiffiffiffi

c12þc32
p exp �krotdkð Þ;

F rot;n ¼ kr
c3ffiffiffiffiffiffiffiffiffiffiffi

c12þc32
p exp �krotdkð Þ;

8<: ð35Þ

where dk denotes the distance between the k-th spacecraft
and the obstacle ellipse:

dk ¼ hk � 1ffiffiffi
A

p ð36Þ

In order to deriving the rotational potential, the well-
known theorem is used: the negative gradient of a potential
V is the associated (artificial) force F , i.e., F ¼ �rV
(Badawy and McInnes, 2008). Applying this theorem to
Eq. (35) leads to

Frot;hn ¼ �r�V rot;k ð37Þ

V tmp
rot;k ¼ �

Z
F rot;hdhk �

Z
F rot;ndnk ð38Þ

Eq. (38) is defined as the temporary rotational potential

V tmp
rot;k, as it does not converge to zero when the spacecraft

reaches the desired target. A function A rð Þ is multiplied
to the temporary rotational potential such that it vanishes
at the target:

Definition.. Let the angle h be the angle between h-axis and
h

0
-axis. Let d ¼ h� 1ffiffiffi

A
p and D ¼ h� 1ffiffiffi

C
p . The rotational

potential (V rot) is defined as
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V rot ¼ krA rð Þ c1
krot

� c3n
� �

exp �krotdð Þffiffiffiffiffiffiffiffiffi
c2
1
þc2

3

p if sin2h 	 0;

V rot ¼ krA rð Þ c5
krot

� c6n
� �

exp �krotDð Þffiffiffiffiffiffiffiffiffi
c2
5
þc2

6

p if sin2h < 0;

8><>: ð39Þ

A rð Þ ¼ 1

� exp � 1

r
r� rVL;goal
� � � r� rVL;goal

� �� R2
� �2 �

; c1

¼ 1

2

a
0

b
0 þ b

0

a0

 !
sin2h; c3 ¼ a

0

b
0 sin

2hþ b
0

a0 cos
2h

 !
; c5

¼ 1

2

a
0

b
0 þ b

0

a0

 !
sin2 h� p

2

� �
; c6

¼ b0

a0
sin2 h� p

2

� �
þ a0

b0
cos2 h� p

2

� �
Note that the above rotational force function and its

associated potential are defined in the local hn-plane. The
rotational force function can be transformed into the refer-

ence frame C through transformation T�1 in Eq. (21):

Frot ¼ T�1 � Frot;hn; 0½ �T ð40Þ
So far, the states of spacecraft have been used to define

the 3-D local coordinate frame, in which the rotational
force function and its associated rotational potential have
been constructed and calculated at each moment the space-
craft needs to maneuver for collision avoidance. With the
potential defined as such, the control law for formation fly-
ing with collision avoidance is derived in the following
Section 4.3.

4.3. Lyapunov-based continuous control law

With the structural & repulsive potentials for maintain-
ing the desired formation and the rotational potential for
collision avoidance integrated into one synthesized func-
tion, a continuous control law can be derived for a group
of spacecraft in formation. The equations of motion for
the k-th spacecraft subject to HCW dynamics is given as

€rk ¼ f k rk; _rkð Þ þ uk ð41Þ
where rk ¼ xk; yk; zk½ �T ; _rk ¼ _xk; _yk; _zk½ �T ; f k rk; _rkð Þ
¼ 2w0 _y þ 3w2

0x;�2w0 _x;�w2
0z

� �T
; uk ¼ uk;x; uk;y ; uk;z

� �T
.

Consider, for example, relative motion of (active) space-
craft with respect to a reference (passive) spacecraft in a cir-
cular orbit at an altitude h km. The angular velocity of the

reference spacecraft is w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RE þ hð Þp

where RE and ME

are the radius and mass of the Earth, respectively. In order
to maintain multiple spacecraft in the formation of regular
polygon/tetrahedron while avoiding collision, the potential
of the k-th spacecraft (V total;k) is constructed as the sum of
the formation potential (V form;k) and the rotational poten-
tial (V rot;k):
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V total;k ¼ V form;k þ V rot;k ð42Þ
Then, the total potential for all spacecraft can be written

as follows:

V total ¼ V total;VL þ
XN

k¼1
V total;k: ð43Þ

The desired control acceleration of the k-th spacecraft is
designed as

€rk;desired ¼ � 1

kv
rV structure;k þ 2rV rep;k þ V tmp

rot;krAk

�
þAkT

�1 � r�V tmp
rot;k þ kvk€rk

� ð44Þ

where Ak ¼ A rkð Þ. Note that Frot;hn ¼ �r�V rot;k and

Frot ¼ T�1 � Frot;hn: With Eq. (44), the time derivative of
the total potential becomes negative semi-definite:

_V total ¼ �
XN

k¼1
kvk _rk � _rk � kvk;VL _rVL � _rVL � 0 ð45Þ

The continuous control law uk for the k-th spacecraft is
obtained from Eq. (44) as

uk ¼ � rV structure;k þrV rep;k þ V tmp
rot;krAk þ AkT

�1 � r�V rot;k þ kvk
kv

_rk

 �
� f k rk ; _rkð Þ

ð46Þ
where f k rk; _rkð Þ denotes HCW dynamics in Eq. (41).

To ensure collision avoidance with obstacles, it may be
considered to add the following avoidance potential to
the rotational potential:

V avoid;k ¼ kavoid
exp �kodkð Þ

dk
ð47Þ

where dk denotes the Euclidean distance between the space-
craft and obstacle surface, and kavoid and ko are scaling fac-
tors. If dk approaches zero, an exponential function of
V avoid;k becomes exponentially large, which ensures that
the spacecraft do not collide with obstacles. The example
of Case 3 in Section 5 considers the control law including
this auxiliary term for obstacle avoidance, but Cases 1
and 2 do not consider this term for collision avoidance
and use only the rotational potential function to demon-
strate that the spacecraft can avoid an obstacle without
using the avoidance potential function. However, the
avoidance potential should be added to ensure collision-
free maneuvers in actual missions.

5. Numerical simulations and analysis

The proposed control law is validated through three dis-
tinctive numerical simulations. The positions and velocities
of all the spacecraft and obstacles are assumed to be
known. With a desktop computer with Intel� CoreTM i7-
7700 K CPU @4.20 GHz, the computation time for the
control law is less than 0.02 s in each step.

Case 1. Mitigation of convergence to an undesired local
minimum
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In order to focus on demonstrating the mitigation of
convergence to an undesired local minimum, consider a
simple example of single spacecraft without dynamics: a

spacecraft is initially located at r0 ¼ �5; 0; 0½ �Tm in the iner-
tial frame I : bx; by;bzf g; the control objective is to transfer

the spacecraft to the target point rgoal ¼ �140; 0; 0½ �Tm
while avoiding a rectangular parallelepiped located at

robs ¼ �70; 0; 0½ �Tm with the dimension of 40� 20� 20m;
note that the center of the obstacle robsð Þ, the initial position
of the spacecraft r0ð Þ, and the target point (rgoal) are aligned
on a straight line. The performance of our proposed con-
trol law (Method A) is compared with that of Method B
based on APF (Badawy and McInnes, 2008) which has
been also developed for mitigating the issue of undesired
local minima.

With the total potential of the spacecraft defined as

V tot ¼ V att þ 1

2
kv _r � _rþ V avoid

¼ kpkr� rgoalk þ 1

2
kv _r � _rþ kavoid

exp �koKð Þ
K

ð48Þ

where K denotes the radial separation distance between
spacecraft and the obstacle’s superquadric surface. The
associated feedback control u is designed such that the time
derivative of the total potential becomes negative semi-
definite:

u ¼ � kp
kv

r� rgoal
� �
kr� rgoalk þ

kvk
kv

_rþrV avoid

 �
ð49Þ

Scaling factors and design parameters in Methods A &
B are set as kp ¼ 0:1, kv ¼ 1; kvk ¼ 7; krot ¼ 0:3,
kr ¼ 2; kavoid ¼ 2, and ko ¼ 40. Fig. 5 shows the trajectories
of the spacecraft for 1600 sec by both methods. The solid
and dashed lines represent the resultant trajectories by
Methods A & B, respectively. The grey rectangular paral-
lelepiped and the grey star represent the obstacle and the
target point, respectively. The spacecraft is initially located
at D, and transferred to 
 at the final time. While Method A
safely drives the spacecraft to the target point without col-
lision, Method B leads the spacecraft to being stuck in
front of the obstacle, i.e., at an undesired local minimum.
Even if the avoidance potential can be designed more rigor-
ously with superquadrics, Method B cannot lead the space-
craft to detour since both the attractive and repulsive forces
act in the opposite direction on a straight line; it simply
repeats moving back and forth in that straight line by the
interaction of attractive and repulsive forces, and is ulti-
mately trapped.

Case 2. Effects of rotational potential for 3-dimensional
formation flying with collision avoidance

Chang et al. (2016) extended the 2-dimensional rota-
tional force function proposed by Rezaee and Abdollahi
(2013) into 3-dimensional one, and developed their colli-
sion avoidance algorithm to resolve the local minimum



Fig. 5. Spacecraft trajectories by Methods A (solid line) & B (dashed line); initial position (D), final position (
), target point (grey star), and obstacle (grey
face).
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issue. The overall approach was applied to the collision
avoidance maneuvers for a group of unmanned aerial vehi-
cles (UAVs) in formation. In this example, the Scenario 3
of Chang et al. (2016), which is an example for UAV for-
mation flying, is reformulated as a collision avoidance
problem for a group of spacecraft in formation. As a vir-
tual leader is considered as a leader spacecraft which must
also avoid collisions in this example, collision avoidance
term is added to the control law of the leader in the Eq.
(12).

Consider a group of four (active) spacecraft (r1; r2; r3; r4)
to move toward a target point while avoiding an obstacle.
They form a square on a circle with its radius R ¼ 2m in the

yz-plane, and are initially located at r1;0 ¼ 0:5; 1; 2:5½ �Tm,
r2;0 ¼ 3:5; 3:5; 7½ �Tm, r3;0 ¼ 2;�1; 6:5½ �Tm, and

r4;0 ¼ 2; 3; 6:5½ �Tm. A (active) leader spacecraft is initially
located at the center of the circle, i.e., at

rVL;0 ¼ 1; 1; 5:5½ �Tm, and is required to reach the target point

at rVL;goal ¼ 30; 30; 15½ �Tm while avoiding the obstacle. The
obstacle is a stationary 2� 3� 3m rectangular paral-

lelepiped centered at robs ¼ 20; 20; 10½ �Tm. All the spacecraft
are subject to HCW dynamics described in Section 2, and
the radius of nominal orbit is RE þ 408ð Þkm. Minimum
Fig. 6. Trajectories of leader and four followers with leader (D) and four follow
approach (Method C; left) and Chang et al.’s approach (Method D; right).
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allowable distance between the spacecraft and the obstacle
is assigned as 3m. Four spacecraft are required to maintain
the square formation. During maneuvers, the minimum
distance between the virtual leader and each spacecraft is

not smaller than 2
ffiffiffi
2

p
2:83m, and the minimum distance

between each spacecraft is not smaller than 2m.
Based on the above formulation, the performances of

our proposed algorithm (Method C) and Chang et al.’s
algorithm (Method D) are compared with each other. In
Chang et al., the original condition to activate collision
avoidance maneuver was R < rk � robsð Þ, but it is modified
into rk � robsð Þ < 11, as it hardly avoids collision. Both
methods use the same attractive and formation potential
for formation flying.

Figs. 6 and 7 show the trajectories of spacecraft and the
relative distance between spacecraft and the obstacle,
respectively. It can be seen that our proposed Method C
initiates maneuvering to rotate the spacecraft slightly
around the obstacle by the effect of rotational potential
when the distance to the obstacle is farther than 3m. Our
trajectory in Fig. 6 shows gradually avoiding trajectory,
as the rotational potential is applied without constraints
on the relative distance from obstacles. On the other hand,
Chang et al.’s Method D starts collision avoidance maneu-
ing spacecraft (�) at t = 0, 200, 350, 500, 1000 and 3000 sec: our proposed



Fig. 7. Minimum distance between four spacecraft and obstacle surface: our proposed approach (Method C; left) and Chang et al.’s approach (Method D;
right).
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ver when the distance between the spacecraft and obstacle
becomes smaller than 11m by the assigned activation con-
dition. While Table 1 shows that both Methods spend sim-
ilar computation time and control efforts, the right-hand
side of Fig. 7 shows one of the spacecraft pass the forbid-
den region in Chang et al.’s Method D, which might be
caused by parameter tuning or different formulation.

In addition, Case 2 was implemented using Method C
for the dynamic equation with J2 perturbation, one of the
most dominant perturbations near the Earth. The resultant
linearized dynamic equations of relative motion of the dep-
uty spacecraft were given in Eq. (50) (Roberts and Roberts,
2004).

€x ¼ 2w0c _y þ 5c2 � 2
� �

w2
0x

€y ¼ �2w0 _x

€z ¼ � 3c2 � 2
� �

w2
0z ð50Þ

where c ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p
and s ¼ 3J 2R2

E=8r
2

� �
1þ 3cos2ið Þ. Here,

J 2 is the second zonal gravitational coefficient according
to JGM-2 model with a value of 1.082626925638815 � 10–
3 and i is the inclination of circular chief orbit, say, 51.6�
(Djojodihardj, 2014).

Since the last term in Eq. (46) offsets the effect of dynam-
ics in the control law, Fig. 8 shows that the trajectory and
distances from the obstacle do not change substantially
even with the effect of J2 perturbations. Though, the differ-
ence can be observed in control efforts which increase by
about 1.78 times, as given in Table 2.

Case 3. Formation reconfiguration while avoiding
collision

This example is inspired by space interferometry mis-
sions. Consider a scenario that a group of five spacecraft
Table 1
Comparison of computation time and cost between Method C and Method D

Method Our Proposed Method C

Computation Time (sec) 1687.0
Control Effort

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
u � uT dtp

(m/sec) (1st) 16.4294 (2nd) 14.0812 (3rd) 11.117
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form/maintain a regular pentagon for a virtual telescope
mission while avoiding an obstacle, one of them is broken
unexpectedly, and the remaining four of them are required
to autonomously reconfigure to form/maintain a square to
continue the virtual telescope mission. Five (active) space-
craft (r1; r2; r3; r4; r5) initially form a regular pentagon on a
circle with its radius R ¼ 6m, and a virtual leader is cen-
tered on the circle in the yz-plane. The obstacle is given
as a 6� 12� 6m rectangular parallelepiped. The control
objective is to transfer those spacecraft while avoiding the
obstacle farther than 5 m away from its surface. The five

spacecraft are initially at rest at r1;0 ¼ 2; 2; 3½ �Tm,
r2;0 ¼ 5; 5; 3½ �Tm, r3;0 ¼ 4; 4; 3½ �Tm, r4;0 ¼ 5; 1;�3½ �Tm, and

r5;0 ¼ 2; 4;�3½ �Tm. The initial position of the (passive) vir-

tual leader is given as rVL;0 ¼ 3;�5; 0½ �Tm, and the target
point of the virtual leader is set as

rVL;goal ¼ �150; 0; 0½ �Tm. The center of a stationary obstacle

is set as robs ¼ �70;�3;�3½ �Tm. All the spacecraft are sub-
ject to HCW dynamics described in Section 2, and the
radius of nominal orbit is RE þ 408ð Þkm.

Fig. 9 shows the trajectories of five satellites (�) around
the virtual leader (D) at 150 sec, 300 sec, 450 sec,619 sec,
670 sec, 800 sec, 1000 sec, 1400 sec, 2000 sec, and 5000
sec. Although the virtual leader was not controlled to avoid
collision, the gradient of structural potential term in the
Eq. (12) works for avoiding collision. Fig. 10 shows the
minimum distances between the spacecraft and the obstacle
surface. Both figures show that the five spacecraft avoid the
obstacle farther than 5:8m until 620 sec. Fig. 11 shows the
distances between each of five satellites and the virtual lea-
der. The relative distances between five spacecraft in for-
mation are given in Fig. 12, where a dashed line
represents the required relative distance between the space-
craft in pentagon before 900 sec and square formation after
.

Chang et al.’s Method D

1914.8
4 (4th) 6.3174 (1st) 17.0050 (2nd) 14.7710 (3rd) 11.9498 (4th) 7.5793



Fig. 8. Trajectory (Left) and Distances between four spacecraft and the obstacle (Right) with J2 perturbation.

Fig. 9. Lines between four spacecraft (solid line), obstacle (grey face), reference trajectory of the virtual leader (dashed line), instantaneous position of
virtual leader (D) and four spacecraft (�) at t = 150, 300, 450, 619, 670, 800, 1000, 1400, 2000, and 5000sec.

Fig. 10. Relative distances between obstacle and four spacecraft (solid
line) and the fifth spacecraft (bold dotted line).

Fig. 11. Relative distances between virtual leader and five spacecraft (solid
line) in pentagonal and square formation, the dashed line represents radius
R ¼ 6m of the formation circle.

Table 2
Comparison of computation time and cost after employing J2 effects.

Method Method C Method C with J2 effect

Computation Time (sec) 1687.0 1778.4
Control Effort

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
u � uT dtp

(m/sec) (1st) 16.4294 (2nd) 14.0812 (3rd) 11.1174 (4th) 6.3174 (1st) 29.1913 (2nd) 25.4044 (3rd) 19.5912 (4th) 11.0471
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Fig. 12. Relative distances between five spacecraft (solid line), the dashed
lines before 620 sec represent the side lengths 7:053m and diagonal length
11:413m of a regular pentagon, the dashed lines after 620 sec represent the
side lengths 8:485m and diagonal 12m of square.
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620 sec. It can be seen that the remaining four spacecraft
without the fifth one successfully maintains their equidis-
tant formation after 620 sec.
6. Conclusions

We have presented a novel and efficient approach for
designing/controlling trajectories for spacecraft formation
flying with collision avoidance. Based on the Artificial
Potential Field (APF), the proposed controller synthesized
the potentials for formation flying and collision avoidance
in one single function, in which an originally derived rota-
tional potential is incorporated in general 3-dimensional

space to avoid undesired convergence to a local minimum.
The potential for formation, which consists of the struc-
tural and repulsive potentials, allows multiple spacecraft
to maintain a regular polygonal shape and to autono-
mously reconfigure into another regular polygon in case
some of them are broken or malfunctioning unexpectedly.
The potential for collision avoidance incorporates the rota-
tional potential in general 3-dimensional space to avoid
local convergence.

The proposed controller has been first proven to be
stable in the sense of Lyapunov, and successfully applied
to three distinctive examples. In the first example, the pro-
posed controller was able to drive a spacecraft to success-
fully avoid the local convergence to an undesired local
minimum thanks to the rotational potential. In the second
example, its performance to maintain the formation while
avoiding collision has been favorably compared with the
performance of an alternative approach. In the last exam-
ple, the proposed controller was able to autonomously
reconfigure the regular pentagonal formation into a square
formation while avoiding collision.

These numerical illustrations imply that the proposed
controller is competitive in terms of simplicity of formula-
tion, formal proof in the sense of Lyapunov, efficient com-
putation time and control efforts. With simple formulation
and the associated low computational burden, the pro-
posed APF-based approach may be suitable for formation
2208
flying with small satellites which have limited computation
capacity.
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